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Abstract. The interaction of an η-meson with two nucleons is studied within a three-body approach. The
major features of the ηNN -system in the low-energy region are accounted for by using a s-wave separable
ansatz for the two-body ηN and NN amplitudes. The calculation is confined to the (Jπ;T ) = (0−; 1)
and (1−; 0) configurations which are assumed to be the most promising candidates for virtual or resonant
ηNN -states. The eigenvalue three-body equation is continued analytically into the nonphysical sheets by
contour deformation. The position of the poles of the three-body scattering matrix as a function of the
ηN -interaction strength is investigated. The corresponding trajectory, starting on the physical sheet, moves
around the ηNN three-body threshold and continues away from the physical area giving rise to virtual
ηNN -states. The search for poles on the nonphysical sheets adjacent directly to the upper rim of the real
energy axis gives a negative result. Thus no low-lying s-wave ηNN -resonances were found. The possible
influence of virtual poles on the low-energy ηNN -scattering is discussed.

PACS. 13.60.Le Meson production – 21.45.+v Few-body systems – 25.20.Lj Photoproduction reactions

1 Introduction

The low-energy interaction of η-mesons with few-nucleon
systems has recently become the subject of vigorous inves-
tigations. A great deal of attention has been devoted to
the search for possible bound or resonance states in these
systems. After an experimental study at Brookhaven [1],
which casts some doubt upon the possibility of observing
η-nuclei with relatively large mass numbers A ≥ 12, the
attention was redirected to the interaction of η-mesons
with light nuclei [2–7]. Recent theoretical investigations
have mainly been stimulated by the precise measurements
of the photoproduction and hadronic reactions with η-
mesons in final states. The obtained results are often inter-
preted as strong experimental hints that correlated states
for light η-nuclear systems might exist (see, e.g., [8]). The
case in point is the strong energy dependence of the ex-
perimental cross-sections observed near the η-production
threshold [9,10].

In the present work we deal primarily with the dy-
namical properties of the ηNN -system. The understand-
ing of these properties is important for the following rea-
sons. Firstly, the ηNN -system is interesting in itself. It
is the simplest η-nuclear system which admits an exact
solution within the three-body formalism. Furthermore,
it may be regarded as an example of a three-body sys-
tem in which the pairwise driving forces are attractive
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and which may in principle develop a bound (or virtual)
state, or a low-energy three-particle resonance near zero
energy. Secondly, the study of ηNN -scattering may serve
as a promising tool for the investigation of the correspond-
ing processes in complex nuclei. The possible existence of
such correlated objects would point to the crucial signifi-
cance of two-nucleon mechanisms in the η-interaction with
nuclei. This fact in turn would require the revision of the
simple first order approximation to the η-nuclear optical
potential adopted by the currently available models [11–
13].

The main features of the ηNN dynamics in a quasi-
deuteron state of spin, parity and isospin (Jπ;T ) = (1−; 0)
are already elucidated in the literature. Ueda was the
first to carry out an extensive calculation of ηd-scattering
within a three-body approach [2] and found that the ηd-
system can form a quasi-bound state with a mass of 2430
MeV and a rather small width of about 10–20 MeV. Other
calculations, also looking for bound or resonant ηd-states
within the Faddeev theory, have recently been reported
by Shevchenko et al. [4] as well as by Garcilazo and Peña
[5]. The authors of ref. [4] confirmed qualitatively the
results of [2] and fixed the values of the ηN -scattering
length for which the previously bound ηd-state becomes
a low-lying s-wave resonance. In ref. [5] the possible ex-
istence of ηd bound states within the different ηN - and
NN -interaction models is also studied. As for the ex-
perimental investigations, we would like to mention the
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measurements presented in [10] for the reaction np → ηd
where a visible increase of the η-meson yield over the
mere phase-space calculation was observed near thresh-
old. Recently, Metag et al. [9] have reported new results
for the cross-section γd→ ηX. These authors also note a
strong enhancement of events in the energy region of a few
MeV above threshold. Such a feature cannot be explained
within the truncated multiple scattering approach devel-
oped in [14], where only single ηN - and NN -rescatterings
were included in the calculation as the most important
corrections to the impulse approximation. This discrep-
ancy is not surprising, since the validity of the latter ap-
proach is associated with the short-range nature of the
ηN - and NN -interactions in relation to the characteristic
internucleon distance in the deuteron. In this situation,
when thinking about the whole picture of the ηNN dy-
namics, one may assume that, when the attractive forces
pull all particles together so that the two-body potentials
overlap, qualitatively new features of the resulting ηNN -
interaction may be expected.

In this paper we will study the question whether the
dynamical properties of the ηNN -system allow the exis-
tence of a bound (or virtual) state or a three-body res-
onances in the low-energy region. Although this question
has already been covered partially in the above-mentioned
works [2,4,5] we would like to reinvestigate it using a fun-
damentally different method, based on a search for poles
of the scattering matrix in the complex energy plane. It
possesses several important advantages over the conven-
tional procedure of solving the on-shell Faddeev equation.
Besides being more convenient for determining the exact
position of S-matrix poles, the method provides additional
insights into the source of appearance of these poles close
to the physical domain. Furthermore, this approach al-
lows us to investigate the (Jπ;T ) = (0−; 1) state which
is not touched upon in the literature to the best of our
knowledge. As was established in [14], this configuration
plays the dominant role in the final state of the γd→ ηX
reaction near threshold. Therefore, if one attributes the
anomalous behaviour of the γd → ηX cross-section re-
ported in [9] to a near lying S-matrix pole, one has to
search it in the (Jπ;T ) = (0−; 1) state. Broadly speaking,
in view of the exclusive character of the measurements [9],
the marked enhancement of the near threshold yield can
be assigned to the ηd final state. But the simple estima-
tion shows that in order to explain the observed results
one would need an enhancement factor of about 30 what
in our opinion seems unlikely. In this context, large atten-
tion is focussed on the (Jπ;T ) = (0−; 1) configuration in
this paper.

Our principal tool is the three-body approach realized
within the Alt-Grassberger-Sandhas formalism [15]. Since
the search for the S-matrix poles requires the analytical
continuation of the dynamical equation into the nonphys-
ical sheets of the Riemann surface, the analytical form for
the driving two-body interactions is needed. For this rea-
son, we use a simple separable potential of rank one and
restrict our consideration to only s-waves in the two-body
subsystems. This approach is well justified by the empiri-

cally established s-wave dominance of the low-energy ηN -
and NN scattering. There exist strong experimental and
theoretical evidences that the low-energy ηN -interaction
is dominated by the formation of the S11(1535)-resonance.
Analogously, the 1S0 and 3S1 poles determine to a large
extent the nucleon-nucleon low-energy interaction. Thus
the s-wave isobars in the ηN and NN two-body channels
are expected to be the main source of the ηNN forces.
Therefore we hope that our separable model, though be-
ing quite simple, will reproduce the major features of the
ηNN dynamics.

In sect. 2 we briefly describe the three-body scattering
formalism pertinent to the present problem. Some details
connected with the driving two-body interactions as well
as the main calculational formulas are given in sect. 3.
In sect. 4 the procedure of analytical continuation of the
scattering equation into nonphysical energy sheets is de-
scribed and the strategy for the search of the S-matrix
poles is presented. The discussion of our main results and
the conclusions are presented in the last two sections.

2 General formalism

In this section we will briefly review the properties of
the three-body equation which will concern us in the re-
mainder of this paper. Our starting point is the conven-
tional three-body scattering theory in AGS form [15]. The
three channels comprising two interacting particles and
one spectator are labeled according to the number of the
spectator. As already mentioned in the introduction, we
take for each channel as the off-shell two-body t-matrix a
rank-one ansatz:

tk(E) = |fk〉τk(E)〈fk| , (1)

and we will call such an interacting pair in the following
“isobar”. Here |fk〉 is the vertex function, and the isobar
propagator τk is defined as

τk(E) =
γk

1− γk〈fk|G(2)
k (E)|fk〉

, (2)

where G(2)
k (E) denotes the free two-body Green’s function

with E as total c.m. energy of the two-particle system. The
separable form (1) enables one to reduce the three-body
problem to a set of coupled effective two-body equations
for the transition amplitudes Xij :

Xij(W ) = (1− δij)Zij(W )

+
3∑

k=1

(1− δik)Zik(W )τk(Ek)Xkj(W ) (i, j = 1, 2, 3), (3)

where W denotes the total three-body energy while the
isobar propagator τk depends explicitly on the invariant
energy Ek of the two-body subsystem, which is a function
of W and the kinetic energy of the spectator. The energy-
dependent driving terms are

Zij(W ) = 〈fi|G(W )|fj〉 , (4)
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with G(W ) being the free three-body Green’s function.
When evaluating equation (4) in momentum space and
making a partial wave decomposition, it becomes a set of
one-dimensional integral equations of Fredholm type. It is
known that for an inhomogeneous Fredholm equation to
be singular, in which case the transition matrix Xij has
a pole, it is necessary and sufficient for the corresponding
homogeneous equation

Fij(W ) =
3∑

k=1

(1− δik)Zik(W )τk(Ek)Fkj(W )

(i, j = 1, 2, 3) (5)

to have a nonzero solution for the same value of the pa-
rameter W . Thus the problem of searching for poles of
the scattering matrix reduces to that of finding those val-
ues W for which the Fredholm determinant D(W ) of (3)
vanishes

D(W ) = 0 . (6)

We now turn to the ηNN -system for which we adopt the
labeling k = 1, 2 for a nucleon spectator and k = 3 for the
η spectator, and furthermore change the channel notation
as

1=2 →N∗ for the ηN -isobar plus spectator nucleon,
3 → d for the NN -isobar plus spectator meson. (7)

The identity of the channels 1 and 2 reduces the 3×3 sys-
tem (5) to a 2×2 system which has the following operator
form in our new notation:

Fdd = 2ZdN∗τN∗FN∗d , (8)
FN∗d = ZN∗dτdFdd + ZN∗N∗τN∗FN∗d , (9)
FdN∗ = 2ZdN∗τN∗FN∗N∗ , (10)
FN∗N∗ = ZN∗dτdFdN∗ + ZN∗N∗τN∗FN∗N∗ . (11)

A close examination of (8) through (11) reveals that we
have two decoupled sets of coupled equations sharing the
identical integration kernel. Indeed, the coupled equations
(8) and (9) are transformed into (10) and (11) by the
substitutions Fdd → FdN∗ and FN∗d → FN∗N∗ . Therefore,
it is sufficient to consider only one set for which we choose
the second one. After inserting (10) into (11) the former
equation may be written in the closed form

FN∗N∗ = (ZN∗N∗ + 2ZN∗dτdZdN∗) τN∗FN∗N∗ . (12)

It is diagrammatically presented in fig. 1. In analogy to a
homogeneous Lippmann-Schwinger equation, we see that
the driving term ZN∗N∗ plays the role of a meson exchange
NN∗-potential while the second term in brackets gives the
mechanism associated with intermediate NN -interaction
where the η acts as a spectator.

3 Two-body ingredients

Now we will specify the separable ηN - and NN -scattering
matrices which determine the driving two-body forces in

our model. Since we restrict the pair-interaction to s-waves
only, the vertex functions have a simple structure deter-
mined by two parameters, the coupling constant gk and
the cut-off βk

〈p |fk〉 = fk(p) = gk Fk(p) with Fk(p) =
β2

k

β2
k + p2

, (13)

where p denotes the relative momentum of the interacting
pair.

For the s-wave t-matrix of the NN = d isobar

td(p, p′, Ed) = fd(p)τd(Ed)fd(p′) , (14)

the following parametrization has been used:

g2d =
16πa
aβd − 2

, γd = − 1
2MN

, (15)

where a is the NN -scattering length. For the propagator
τd one then obtains

τd(Ed) = − 1
2MN


1+ g2dβ

3
d

16π
(
iβd+

√
MN (Ed−2MN )

)2



−1

.

(16)

The NN -interaction parameters were taken from the low-
energy np-scattering fit of Yamaguchi [16]:

βd = 1.4488 fm−1

a =
{

5.378 fm for the 3S1-state,
−23.690 fm for the 1S0-state.

(17)

Analogously, we use for the ηN=N∗ t-matrix the following
ansatz:

tN∗(p, p′, EN∗) = f (η)
N∗ (p)τN∗(EN∗)f (η)

N∗ (p′) . (18)

Here the N∗-propagator is given in the form

τN∗(EN∗) =
(
EN∗ −M0 −Σπ(EN∗)−Ση(EN∗)

)−1

, (19)

where M0 denotes the bare mass of the S11(1535)-
resonance. The resonance self-energies associated with the
couplings to the πN - and ηN -channels are determined by

Σj(EN∗) =

1
2π2

∞∫
0

f
(j)2
N∗ (p)

EN∗ − EN (p)− ωj(p) + iε
p2 dp
2ωj(p)

, (20)

where ωj(p) =
√
m2

j + p2 denotes the energy of meson

“j” and EN (p) = MN + p2/2MN is the nonrelativistic
total nucleon energy. The meson-N∗ vertices are defined
by (j = π, η)

f
(j)
N∗(p) = g

(j)
N∗ F

(j)
N∗(p) , with F (j)

N∗(p) =
β

(j)2
N∗

β
(j)2
N∗ + p2

. (21)
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Fig. 1. Graphical representation of the homogeneous equation (12) for the ηNN three-body eigenvalue problem.

The N∗ parameters were chosen in such a way that the
main ratios of the hadronic decays of the S11(1535)-
resonance are reproduced. We have taken

g
(η)
N∗ = 2.0 , g(π)

N∗ = 1.5 ,

β
(η)
N∗ = 6.5 fm−1, β

(π)
N∗ = 4.5 fm−1. (22)

The bare S11 mass M0 was determined by the condition

M0 + �e
(
Σπ(M∗) +Ση(M∗)

)
=M∗ , (23)

where M∗ = 1535 MeV is the mass of the dressed isobar.
The choice (22) gives for the total and partial decay widths
at the resonance position

Γ = 150MeV,
ΓηN

Γ
=
ΓπN

Γ
= 0.5 , (24)

which is reasonably consistent with the values given in the
1998 Particle Data Group listings [17].

For the actual evaluation of (12) we use a natural rep-
resentation in which the total angular momentum J and
the total isospin T are diagonal. The ηNN wave func-
tion is expanded into a complete set of the following basis
states:

|q ; JMJ TMT 〉= |{(τiτj)tkτk}TMT 〉
∑
LML

∑
SMS

CJMJ

LML SMS

×|{(σiσj)skσk}SMS〉 |q; LML〉YLML
(q̂) . (25)

Here σi and τi denote the spin and isospin of the individual
particles forming the isobar with the corresponding quan-
tum numbers si and ti. The partial waves are normalized
as

〈q; LML|q′; L′M ′
L〉 =

1
q2
δ(q − q′)δL′LδM ′

LML
. (26)

In (25) we have already taken into account that the
two-particle forces act only in l = 0 states. The mo-
mentum q characterizes the relative motion of the cor-
related (ij)-pair and a spectator particle. It is projected
onto the partial waves specified by the total orbital mo-
mentum L with projection ML. Taking into account the
parametrization adopted for the two-body vertices, the
expansion (25) turns the operator equation (12) into a
set of one-dimensional integral equations for the partial
waves |q; LML〉. In the following we consider only states
with total orbital angular momentum L = 0. Then the
two allowed configurations are (Jπ;T ) = (0−; 1) and
(1−; 0). Consequently, only the 1S0 NN -state contributes
to the three-body state (0−; 1), and correspondingly the
3S1 NN -state to (1−; 0).

In order to apply the representation (25) to eq. (12), we
only need the spin-isospin recoupling coefficients between
the states j and k for which one has

〈{(σiσj)skσk}SMS |{(σkσi)sjσj}S′M ′
S〉 =

δS′SδM ′
SMS

√
(2sj + 1)(2si + 1)W (σiσkσjS; sjsk) , (27)

〈{(τiτj)tkτk}TMT |{(τkτi)tjτj}T ′M ′
T 〉 =

δT ′T δM ′
T MT

√
(2tj + 1)(2ti + 1)W (τiτkτjT ; tjtk) , (28)

whereW (j1 j2 j3 j4 ; j5 j6) denotes the standard Racah co-
efficient.

Taking the actual quantum numbers of the participat-
ing particles, we obtain the following explicit form of the
driving terms appearing in (12)

〈p; JT |ZN∗N∗ |p ′; JT 〉 = Vη(p, p′,W ) + χVπ(p, p′,W ).
(29)

Here the spin-isospin coefficients are χ = −1/3 for (0−; 1)
and χ = 1 for (1−; 0). The meson-exchange potential act-
ing in the L = 0 wave reads

Vj(p, p′,W ) =
g
(j)2
N∗

8π

×
+1∫

−1

F
(j)
N∗

(
p ′ + MN

MN+mj
p
)
F

(j)
N∗

(
p+ MN

MN+mj
p ′

)
2ωj(|p+ p ′|)

(
W−EN (p)− EN (p′)− ωj(|p+ p ′|)

)
× d(p̂ · p̂′) , (30)

with (j = π, η). For simplicity we use the nonrelativis-
tic relative meson-nucleon momenta in the arguments of
the regularization vertex form factors. The driving term
associated with the intermediate NN -interaction has the
form, using Ed = W − ωη(q)− q2/4MN as the total c.m.
energy of the interacting NN -pair,

〈p ; JT |ZN∗dτdZdN∗ |p ′; JT 〉 = Vd(p, p′,W )

=
2
π

∞∫
0

q2 dq
2ωη(q)

VN(p, q,W )τd
(
W−ωη(q)−q2/4MN

)
VN (p′, q,W ),

(31)

where the nucleon-exchange potential is given by

VN (p, p′,W ) =
g
(η)
N∗gd
8π

×
+1∫

−1

F
(η)
N∗

(
p ′ + mη

MN+mη
p
)
Fd

(
p+ p ′

2

)
W − EN (p)− ωη(p′)− EN (|p+ p ′|) d(p̂ · p̂

′). (32)
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The integrals in (30) and (32) can be evaluated analyt-
ically. The corresponding expressions, being rather cum-
bersome, are listed in the appendix. Finally, we present
the partial-wave representation of our basic homogeneous
equation (12)

FN∗N∗(p,W ) =
2
π

∞∫
0

VN∗N∗(p, p′,W ) τN∗

(W − EN (p′)− p′ 2/2M∗)FN∗N∗(p′,W ) p′ 2dp′ , (33)

where the notation

VN∗N∗(p, p′,W ) =
2Vd(p, p′,W ) + Vη(p, p′,W ) + χVπ(p, p′,W ) (34)

is introduced, and the invariant mass of the N∗-isobar in
(34) was evaluated as EN∗ = W − EN (p′) − p′2/2M∗.
Anticipating a later result, we note that the contribution
from the pion exchange potential Vπ in (34) is practically
insignificant, and almost the whole attraction in the ηNN -
system comes from the first two terms with approximately
equal strengths.

The method for searching the zeros of the Fredholm de-
terminant D(W ) is to approximate the integral in eq. (33)
by a finite sum, transforming it into an ordinary matrix
equation. Then (6) may be written as an algebraic equa-
tion

det
∣∣∣δij − 2

π
p2jCjVN∗N∗(pi, pj ,W )

×τN∗
(
W − EN (pj)−

p2j
2M∗

)∣∣∣ = 0 . (35)

Here Cj are the weights for the chosen quadrature (in the
present calculation we have chosen the Gauss quadrature).

4 Structure of the Riemann surface and
continuation into nonphysical sheets

Our main concern is to find the zeros of the Fredholm
determinant in the complex energy plane resulting in poles
of the scattering matrix. The structure of the manifold
Riemann surface for the ηNN -system in (Jπ;T ) = (1−; 0)
channel is presented in fig. 2.

Shown are the physical sheet Π1 and the nearest non-
physical sheets Π2, Π3 directly adjacent to Π1. The sheet
Π1 has a conventional analytical structure. Namely, it may
have poles corresponding to a possible formation of three-
body bound states, and the unitarity right-hand cuts. The
former stem from the Cauchy type integrals inherent in
the integration kernel in (33). There are two main cuts
which determine the structure of the Riemann surface for
the three-body problem in the energy region of interest:

i) A two-particle cut, beginning at the two-body
threshold Wηd = 2MN + mη + εd, where εd < 0 is the
deuteron binding energy. The cut arises from the prop-
agator τd(Ed) which has a pole when Ed − 2MN = εd.

W
η d

W
η NN

3’
1

3

2

Π

Π

Π

4’

4
3

2’
1’

1
2

Fig. 2. Structure of the Riemann surface for the ηNN scatter-
ing matrix in the (1−; 0) channel in the near threshold region.
Shown are the physical sheet Π1 and the adjacent nonphysi-
cal sheets Π2, and Π3. Two vertical dashed lines pass through
the two-body (Wηd) and three-body (WηNN ) thresholds. The
numbers i and i′ indicate the identified rims of the associated
two- and three-body unitary cuts.

This pole is associated with the elastic η-deuteron scat-
tering and gives the well-known two-body contribution
to the common three-body unitarity relations. The cor-
responding square-root branch point W = Wηd develops
the two-sheet structure {Π1, Π2} typical for conventional
two-body scattering.

ii) A three-body cut, starting at the three-body thresh-
old WηNN = 2MN +mη. This cut is induced by the two-
body right-hand cut in τd corresponding to the d → NN
break-up and by the similar cut in τN∗ associated with the
decay N∗ → ηN . The corresponding nonphysical sheet is
denoted as Π3 in fig. 2. Furthermore, the driving terms
Vπ, Vη, and VN in (30) through (32) contain the well-
known logarithmic singularities which are analogous to the
dynamical (left-hand) singularities of the nucleon-nucleon
OBE potential and correspond to the exchange of a real
particle which becomes possible when W ≥ WηNN . For
some values of p and p′ these singularities pinch the real
axis producing the additional three-body cut beginning at
the branch point W = WηNN . In the partial-wave repre-
sentation, this point is of logarithmic type and gives rise
to an infinite number of sheets at W =WηNN . The struc-
ture of the Riemann surface associated with the logarith-
mic singularities is in itself of no physical interest and is
therefore not presented in fig. 2.

All sheets are connected as depicted in fig. 2. The sheet
Π2 may contain the poles which show up as correlated two-
body ηd states (virtual or resonant). The analogous states
which may be observed in the three particle scattering
processes are located on the sheet Π3. In the absence of
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I I
III

IVII II

ηπ ΝΝΝΝ

Fig. 3. Relationship of the four sheets for a two-channel ηNN -
πNN problem. The point moving around the ηNN threshold
passes successively all four sheets denoted here by the roman
numerals.

an actual three-body scattering experiment, these states
may occur as final states in reactions with, e.g., deuteron
break-up, such as γd → ηnp. Following the terminology
accepted in the literature we call Π2 and Π3 as two-body
and three-body sheets, respectively.

The singularity structure outlined above arises from
the free three-body propagators and the poles associated
with the bound states of two-body subsystems. It is also
presented in detail in refs. [18–22] in relation to the three-
nucleon problem. The Riemann surface for the ηNN -
scattering matrix is formally more complicated due to the
following reasons:

i) Since there is a rather strong coupling between the
ηN and πN channels in the energy region of the S11(1535)-
resonance, all sheets depicted in fig. 2 have an additional
cut beginning at πNN threshold1. The typical structure
of the Riemann surface associated with the ηN ↔ πN
coupling is presented in fig. 3.

ii) The three-body sheet Π3 has an additional square-
root branch point associated with the quasi-two-body
NN∗ threshold. Treating the bare N∗ mass as noted in
sect. 4 (see eq. (23)), we keep the corresponding complex
cut well away from the relevant energy region and, there-
fore, will ignore it in the following considerations.

The structure of the Riemann sheet for the ηNN scat-
tering matrix in the (Jπ;T ) = (0−; 1) state is different
from that for (Jπ; T ) = (1−; 0). Namely, due to the vir-
tual character of the 1S0 pole, the corresponding two-body
sheet Π2 is “glued” not directly to Π1 as previously but
to the three-body sheet Π3.

From ordinary potential scattering theory it is known
that the poles of the scattering matrix corresponding to
virtual or resonant states are located in the nonphysical
energy domain. The continuation into this area may be
performed by going around the branch point at threshold
in order to get the virtual pole or directly from the upper
half complex energy plane by crossing the real positive
axis to reach the resonance pole. This continuation may

1 Due to the spin-isospin selection rules the πd channel does
not appear in the configurations (Jπ; T ) = (1−; 0) and (0−; 1)
considered in this paper. Therefore no additional two-body cut
starting at the πd threshold is present.

clearly be done if the analytical expression for the scat-
tering matrix is available. Otherwise, one has to use the
dynamical equation written in terms of the real energies
in order to continue it into the nonphysical area. In the
former case, several recipes may be used (for a review of
the methods see, e.g., [18]).

Turning to the three-body problem we would like to
mention the method of analytical continuation based on a
contour deformation technique. This method, developed
in [19,20], was previously applied to the three-neutron
problem and later to the study of the Σ−nn- and Λnn-
interaction [23]. In this paper we extend this technique to
the ηNN -interaction including the inelastic πNN chan-
nel. Firstly, we would like to review briefly the basic de-
tails of the method. Let us consider the following Fredholm
equation:

F (p,W ) =
∞∫
0

f(p′,W )
2mW − p2 − p′2 − (p+ p ′)2

F (p′,W )dp′ , (36)

where the function f(p′,W ) does not have any singularity
in the relevant energy domain. For simplicity we consider
three particles having equal masses m and use nonrela-
tivistic kinematics. The energy W is the total kinetic en-
ergy. The physical region is determined in the usual fash-
ion: �eW > 0, 
mW = ε→ +0. Because of the singular-
ities of the kernel for realW one can not directly continue
the equation down through the cut 0 ≤W <∞.

In this case, shifting the integration path for p′ to the
position C in fig. 4 (the angle θ is arbitrarily taken to
be π/4) we can cross the real energy axis and enter the
area on the nonphysical sheet. Here the variable p is also
taken on the contour C. The parabolic borderline sepa-
rates the analytical domain from the forbidden area where
the denominator in (36) may vanish for some values of p
and p′. If one uses relativistic kinematics the permissi-
ble area slightly narrows. The continuation procedure is
of course justified when the contour being deformed does
not hit any singularities of the integration kernel. It must
be noted that the method allows one to uncover only the
certain part of the nonphysical sheet. However, varying
suitably the contour parameters (a, θ), one can get the ma-
jor part of the nonphysical domain. We note also that in
the present calculation the procedure described above was
applied directly to eq. (35), since all singularities of the
kernel are contained in the Fredholm determinant D(W ).

4.1 Continuation into the lower half of the sheet Π1

From the diagrams shown in fig. 3 it is clear that the lower
half-plane of the sheet Π1 in fig. 2 is at once the lower half
of the three-body nonphysical sheet for the πNN channel
reached from above by crossing the cut between πNN and
ηd thresholds. This area is indicated as (II) in fig. 3. There-
fore, when continuing into this domain, the logarithmic
singularities of the three-body propagator in Vπ(p, p′,W )
present an obstacle. A slight shift of the integration path
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θ

Fig. 4. Analytical continuation of the integral equation (36)
within the contour deformation method. The top panel shows
the new integration path C, determined by the length of a
finite straight line a and a rotation angle θ (here θ = π/4).
On the bottom panel, the new domain of analyticity in the
lower half-plane of the nonphysical sheet is shown. The en-
ergy, corresponding to the corner point A, may be evaluated
as WA = 0− ia2/m.

W-plane

Re W

Im
 W

W WNN NN

domain of analyticity

π η

Fig. 5. The energy domain of the sheet Π1 available for the
analytical continuation. The parameters of the integration path
C having the form shown in fig. 4 are: a=200 MeV/c, θ = 15◦.

(analogously to the pattern in fig. 4) into the fourth quad-
rant allows one to reach the area shown in fig. 5.

Some calculational problems within this method may
occur when the energy W approaches the real axis above
the ηNN three-particle threshold since the analyticity do-
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Re W
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Im
 p

’

Re p’
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C

p
0

domain of analyticity

W W

θ

η d η NN

Fig. 6. Continuation into the two-body sheet Π2. On the top
panel we show the pole p0 of the propagator τd moving across
the integration path when the energy W passes through the
two-body cut on the interval Wηd < W < WηNN . The param-
eters of the new contour are the same as in fig. 5. The energy
domain reached on the sheet Π2 is shown on the bottom panel.

main degenerates into part of a straight line. In this limit
one has to handle the numerics with greater accuracy.

4.2 Continuation into the sheet Π2

In order to continue eq. (35) into the sheet Π2, we adopt
the following procedure. Entering into this sheet is accom-
panied by the movement of the pole p0 of the propagator
τd into the fourth quadrant of p′. This requires the contour
deformation as is shown on fig. 6.

In restoring the integration path to its original posi-
tion, we pick up the new term in the potential Vd(p, p′,W )
corresponding to the residue of the integrand in (31) at
q = p0:

Vd(p, p′,W ) =
2
π

∞∫
0

q2 dq
2ωη(q)

VN (p, q,W )

×τd
(
W − ωη(q)− q2/4MN

)
VN (p′, q,W ) + i

gd β
3/2
d

2
√
π

×
p0

√
|εd|
MN

ωη(p0) + 2MN
VN (p, p0,W )VN (p′, p0,W ) , (37)
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W NNη

Fig. 7. The same as in figs. 5 and 6 for the sheet Π3. The
parameters of the shifted contour are a=200 MeV/c, θ = 80◦.

where

p0 = 2
√
MN

×
{
W + |εd| −

√
m2

η + 4MN (W + |εd| −MN )
}1/2

, (38)

(compare with (31)). In this manner we may cross the two-
body cut in the intervalWηd < W < WηNN and enter into
the lower half-plane of the sheet Π2 (transition 2 → 2′ in
the notation of fig. 2). The new domain of analyticity is
shown in fig. 6.

Continuation into the upper half-plane of the sheet Π2

(transition 1 → 1′) may be performed in a like manner. In
this case, the pole p0 crosses the integration contour when
moving from below into the first quadrant of the p′-plane.

4.3 Continuation into the sheet Π3

For the continuation into the sheet Π3 from the region
above the segment WηNN ≤ W < ∞ of the real energy
axis, we use the same technique as was outlined in 4.1.
In order to reach the domain below the ηNN threshold
it is necessary to take θ > π/4. In this case, however,
one has to avoid the singularities on the imaginary p′-
axis which come from the regularization form factors as
well as from the factors of the type 1/

√
2ωj(p) in the

integrands in (30). Therefore, the rotation angle θ must
be restricted to values less than π/2. Thereby, we also do
not encounter any problem with the poles of τd and τN∗ .
Choosing the mesh points from the deformed contour C,
the three-body energy W can be taken to pass above the
three-body threshold WηNN and down through the cut
into the lower half-plane of the sheet Π3 as is shown in
fig. 7 (transition 4 → 4′ in fig. 2).

The analytical continuation into the upper half-plane
of the sheet Π3 is easily possible if the pion-exchange po-
tential is ignored. Otherwise the logarithmic singularities
from Vπ bar the continuation path. For this reason, when
entering this area from the lower half-plane of Π1, we will
switch off the pion-exchange forces. In this case, in order
to make the transition 3 → 3′ in the notation of fig. 2,
one just has to shift the contour into the first quadrant of
the integration variable. Taking into account the smallness

of the contribution from Vπ as denoted above, we believe
that neglection of the pion-exchange potential does not
spoil significantly the quality of our results.

5 Results and discussion

In order to obtain a better insight into the ηNN low-
energy dynamics, we have investigated the trajectories
drawn by the S-matrix poles on the Riemann surface when
varying the interaction parameters. In doing this, we are
guided by the following consideration. We presume that
the pole trajectory, on which one expects to find a reso-
nance or virtual three-body state closest to threshold, will
also contain the deepest bound state eigenvalue. In this
regard, we artificially enhanced the strength of the ηNN -
forces until the first bound state (i.e., the pole on the
sheet Π1) appears. Then we have approached the actual
physical situation by weakening the interaction strength
to the value determined by the parameters given in sect. 3.
Following this variation, the pole moves on the Riemann
surface and finally arrives at several positions, developing
in this way the bound (virtual) or resonant three-body
state. Clearly, it may also appear on a Riemann sheet far
removed from the physical region and thus will not influ-
ence the real scattering processes.

Turning back to the ηNN -system, we take as a vary-
ing parameter the coupling constant g(η)

N∗ . As its physical
value we consider that presented in (22). We will start with
the (1−; 0) channel, the quasideuteron case. Before pro-
ceeding further, in order to see how the pole may behave
when approaching the threshold region, we will ignore for
the moment being the πNN channel by setting g(π)

N∗=0.
Then we took g(η)

N∗=4 and found the bound state pole at
Wpol =WηNN −8.08 MeV. As expected, the weakening of
g
(η)
N∗ implies the motion of the pole towards the threshold
region. At g(η)

N∗=2.5 it overtakes the ηd two-body threshold
and passes into the two-body sheet Π2 producing a virtual
ηd state. Further weakening of the ηN -attraction pulls the
pole back along the negative real axis away from the phys-
ical region. We would like to note that this shape of the
trajectory is what we can expect naively from ordinary
two-body potential scattering. Owing to the absence of
the centrifugal barrier, the s-wave pole develops a virtual
state and not a resonance when passing into the nonphys-
ical sheet (here we do not touch upon exotic cases like the
multitude of s-wave resonances in a deep square well [24]).
We may expect to encounter the same pole behaviour in
a three-body case since our physical situation is in effect
the two-particle interaction with one being complex.

Now including again the πNN channel, we see that
its effect is to shift the starting position of the pole
downwards from the real axis and thus to transform
the real ηNN bound state into the πNN resonance
(or, what amounts to the same, the ηNN bound state
with a finite lifetime). Then decreasing g(η)

N∗ and allow-
ing the eigenvalue Wpol to pass the ηNN threshold, we
reach the situation illustrated in fig. 8, where some pole
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Fig. 8. The pole trajectories of the ηNN scattering ma-
trix for the (Jπ;T ) = (1−; 0) state. Three trajectories corre-
spond to the different choices of the πNN∗ coupling constant:

g
(π)
N∗=0 (stars), g

(π)
N∗=1 (filled triangles), and g

(π)
N∗=1.5 (filled cir-

cles). The legend shows the values of the ηNN∗ coupling con-

stant g
(η)
N∗ being varied along the individual trajectory. The

trajectory shown by the dashed curve is continued into the
three-body sheet Π3. The other trajectories pass into the two-
body sheet Π2 (see the text).

trajectories corresponding to the different values of g(π)
N∗

are shown. One can see that the widths of the hypothet-
ical ηNN bound states are sufficiently less than that of
the S11(1535)-resonance in this energy region. This is due
partially to the fact that ηNN -system spends a large frac-
tion of time in the η(NN)-state (not in N(N∗)), which in
this region has no direct coupling with any configuration
in the continuum. This effect explains also the anomalous
decrease of the πNN -resonance width when approaching
the η-production threshold. As one can see from fig. 8,
with increasing g(π)

N∗ the trajectories are shifted downwards
and the point where the pole meets the real energy axis
moves to the right. For the physical value g(π)

N∗ = 1.5 this
point is located at W ≈ WηNN+1.51 MeV. The trajec-
tory crosses the real axis above the three-body threshold
and passes to the three-body sheet Π3 (dashed curve with
open triangles in fig. 8). If one go around the three-body
threshold WηNN and enters the upper half plane of the
two-body sheet Π2 (dotted line in fig. 8), one finds the ex-
tension of the trajectory also into this sheet (solid curve
with filled circles). We recall that we neglected the pion-
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Fig. 9. The pole trajectories of the ηNN scattering matrix for
the (Jπ;T ) = (0−; 1) state. Notation as in fig. 8.

exchange potential when calculating the trajectory pass-
ing into the sheet Π3 (see sect. 4.3). For this reason the
parts of the last two trajectories lying on the sheet Π1 are
not identical. We see however that the difference is not
significant. The pole positions corresponding to g(η)

N∗=2.0
are Wpol =WηNN − (3.00− i13.67) MeV on the sheet Π3

and Wpol =Wηd − (4.39− i7.22) MeV on the sheet Π2.
After these findings we have carried out a careful

search for poles on the lower half-plane of the sheets Π2

and Π3. Of course, we were interested primarily in the en-
ergy area just beyond the real axis where possible resonant
states may occur. Our conclusion is that no poles appear
in the physically interesting domain at least for reasonable
values of the interaction parameters. As for the presence of
a possible resonance pole on the three-body sheet Π3, one
can assume that it may be found beyond the complex uni-
tarity cut generated by the NN∗ break-up singularity in
τN∗ . In any case, this pole, if it exists, is far removed from
the relevant energy region and will hardly influence the
near threshold ηNN interaction. Thus within our model,
the S-matrix poles nearest to the physical region are situ-
ated on the upper half plane of the sheets Π2 and Π3 and
produce virtual rather than resonant states in the ηNN -
system.

Now we will consider the (Jπ;T ) = (0−; 1) channel.
We make the same variation of the N∗ coupling constants
and obtain the trajectories depicted in fig. 9. Switch-
ing off the πNN channel, we found the corresponding
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trajectory moving around the ηNN threshold and end-
ing in the third quadrant of the variable W −WηNN on
the sheet Π3. The similar pole behaviour was noted also
for the Σ−nn and Λnn s-wave configurations in ref. [23].
Increasing g(π)

N∗ and varying g(η)
N∗ from 4 to 2, we find

the general picture to be qualitatively the same as in
the quasideuteron case. One notes a visible shift of the
trajectories towards the higher energies, which is most
likely explained by the weakening of the NN -interaction
in the singlet 1S0-state in relation to the more attrac-
tive 3S1-state. The trajectory corresponding to g(π)

N∗=1.5
brings the final position of the pole to the point Wpol =
WηNN + (14.06 + i17.19) MeV.

What are the physical consequences that we can ex-
tract from the results above? First, as we just have shown,
it is unlikely that a low-energy resonance will be found in
the (0−; 1) or (1−; 0) channels. On the other hand, the
virtual poles on the sheets Π2 and Π3 may influence the
value of the scattering amplitudes through its proximity to
the threshold region. Thus the next logical step in this di-
rection would be to calculate, e.g., the ηd-scattering near
threshold. This problem, when treated within a three-
body approach, is rather complex in itself and is beyond
the scope of the present paper. The corresponding inves-
tigations for the elastic and inelastic ηd-scattering will be
presented elsewhere (see also [4,5]). Here we adopt the ap-
proximate formula for the s-wave elastic two-body scat-
tering, when the amplitude has a virtual pole near zero
energy (see, e.g., [25]):

σηd =
4π

|ppol − p|2 , (39)

where p denotes the c.m. ηd momentum and ppol its pole
position, determined as

ppol=

√
2Mdmη

Md +mη
(Wpol −Md −mη) , 
mppol < 0, (40)

with Md being the deuteron mass. In fig. 10 we show the
result obtained for Wpol = Wηd − (4.39 − i7.22) MeV.
One sees a strong enhancement of the cross-section as we
approach the threshold energy, an effect which is typical
when the system possesses a weak virtual state. Therefore
we conclude that in the region of a few MeV above thresh-
old an anomalous resonance-like behaviour can in general
be expected in the cross-section of reactions with ηNN
channels in the final state.

Finally we must note that our results are in contrast
with those of Shevchenko et al. [4] who claimed the ex-
istence of s-wave ηd-resonances. They used the on-shell
solution of the nonrelativistic three-body equation and
found the counterclockwise rotation of the ηd-scattering
amplitude in the Argand plot. The reason for this disagree-
ment is not completely clear to us. On the other hand, we
would like to mention the qualitative agreement of our re-
sults with those presented in [5] where a similar behaviour
of the ηd-scattering cross-section in the low-energy region
was found.
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Fig. 10. Elastic ηd cross-section evaluated according to the
approximate formula (39).

6 Summary and conclusion

In order to answer the question whether there might
exist a low-energy resonance or virtual ηNN -state, we
have studied the typical pole trajectories Wpol(g

(η)
N∗) for

the ηNN -system in L = 0 states. Decreasing the ηN -
interaction parameter g(η)

N∗ , the pole overtakes the three-
body threshold and moves into the upper half plane of the
sheetsΠ2 andΠ3 adjacent to the lower rim of the two- and
three-body unitarity cuts on the physical sheet Π1. Since
these areas are not directly connected with the physical
one, we have to conclude that no three-body resonances
can occupy these trajectories. Moreover, we can assume
that the very pattern of the pole trajectories forbids a
low-energy ηNN resonance independent of the actual val-
ues of interaction parameters. We expect this feature to
be valid in general for (L = 0)-ηNN configurations, at
least within the model of a type presented here. On the
other hand, our results point to a possible explanation of
the strong enhancement of the η-production cross-section
near threshold. This effect may be assigned not to a reso-
nance but to virtual ηNN -states, indeed generated by the
poles on the sheets Π2 and Π3.

We would like to emphasize that our conclusion is
based essentially on the model of a pure s-wave interac-
tion. The typical feature of an s-wave interaction known
from the familiar two-body problem is to develop a vir-
tual rather than a resonance state. In this context, it will
be of interest to enrich the present study by including
p-waves in the partial-wave decomposition (25). It must,
however, be kept in mind that p-waves are energetically
far less favourable in a low-energy regime. Therefore, we
think that even though a pole may come sufficiently close
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to threshold, quite a strong enhancement factor from a
p-wave contribution would be needed in order to make a
possible p-wave resonance visible in the cross-section.

Another aspect, left out in the present work, is the so-
called direct NN∗-interaction which is not automatically
accounted for in the conventional three-body approach.
Due to the short-range character of this interaction, asso-
ciated with its static nature, the corresponding terms are
expected to give only a small contribution when compared
to the full scattering amplitude (with respect to the role
of these terms in ∆N -interaction see, e.g., [26]). However,
it should be remembered, that three-body low-energy dy-
namics is known to be rather sensitive to the model vari-
ation. Thus even a small perturbation may change some
of the present results.
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Appendix

For the driving terms in (30) and (32) one finds the fol-
lowing analytic expressions: (a) meson exchange potential
(j = π, η):

Vj(p, p′,W ) =
g
(j)2
N∗ β

(j)4
N∗

16π

(MN +mj

MN

)2

× 1
p p′ (α2

1 + c2)(α
2
2 + c2)

{
ln
c− a−
c− a+ −

[ α2
2 + c

2

2 (α2
1 − α2

2)

×
(
2 ln

|A+
1 |

|A−
1 |

− i c
α1

ln
A+

1 A
−
1

(A+
1 A

−
1 )∗

)
+ (1 ↔ 2)

]}
, (A.1)

where

c = W − EN (p)− EN (p′) , (A.2)
a2± = m2

j + (p± p′ )2 , (A.3)

α2
1 =

MN+mj

MN
β

(j)2
N∗ −m2

j+
mj

MN
p′ 2− mj

MN+mj
p2, (A.4)

α2
2 =

MN+mj

MN
β

(j)2
N∗ −m2

j+
mj

MN
p2− mj

MN+mj
p′ 2, (A.5)

and A±
k = αk ± i a± for k = 1, 2. If α1 = α2 = α, then

with A± = α± i a±

Vj(p, p′,W ) =
g
(j)2
N∗ β

(j)4
N∗

16π

(
MN +mj

MN

)2 1
pp′(α2

1 + c2)2

×
{
ln

(c− a−
c− a+

|A+
1 |

|A−
1 |

)
+ i c

3α2 + c2

4α3

× ln
A+A−

(A+A−)∗
+ 2�e

[(
i+
c

α

)a− − a+
A+A−∗

]}
. (A.6)

(b) nucleon exchange potential:

VN (p, p′,W ) =
g
(η)
N∗gdβ

(η)2
N∗ β2

d

16π pp′
MN (MN +mη)

mη

× 1
(a2−a1)(a2+c)(a1+c)

{
(a2 + c) ln

a1 + pp′

a1 − pp′ (A.7)

−(a1 + c) ln a2 + pp
′

a2 − pp′ − (a1 − a2) ln c+ pp
′

c− pp′
}
,

where

a1 =
MN +mη

2mη

(
β

(η)2
N∗ + p′ 2

)
+

mη

2(MN +mη)
p2 , (A.8)

a2 = β2
d + p2 + p′ 2/4 , (A.9)

c = MN (W−EN (p)−ωη(p′)−MN )−(p2+p′ 2)/2 . (A.10)
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